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It is shown that the refined non-perturbative Hill’s method solves in a very neat way the 
Schriidinger equation I” + [E - x2 - Lx’/( 1 + gx’)]yl = 0. The refinement of the standard 
Hill’s method consists in finding a renormalized frequency to optimize the calculation. This 
method appears to be preferable to the variational one recently used by A. K. Mitra in the 
same context. 

I. INTRODUCTION 

The least years have seen the development of non-perturbative methods of 
resolution of Schriidinger’s equation (SE) in all cases where the exact solution does 
not exist. Such methods are necessary since the calculus of perturbation frequently 
provides insufficient information (low accuracy, divergent series, etc.). The best- 
known non-perturbative scheme is the classical variational Ritz method. More 
recently various authors have developed new methods [l-4]. Mitra [5] published a 
paper dealing with the variational calculation of the eigenstates of the potential 
x2 t 1x2/( 1 + gx”). It contains a good illustration of the numerous problems that are 
encountered by the users of such a variational scheme. All these difficulties are well 
emphasized by the author himself throughout his paper: 

(1) The N x N hamiltonian matrix contains nothing less than N2/2 non- 
vanishing elements H,,, . 

(2) These elements are written as non-elementary integrals involving pairs of 
Weber-Hermite functions. They must, be computed through a numerical procedure. 
Since the individual evaluation of each integral would be time consuming, Mitra 
established recurrence relations between the successive integrals and then calculated 
all the terms recursively. 

However, recursive procedures may not be used without precautions [6] that are 
apparently overlooked by Mitra. Let us stress that important point. The integrals 
H m,n are defined by [ 5 ] 

Hnt,, = I 

+m u,u, 

-m 1 +gx2 
dx, 
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where the U,,, are the wavefunctions of the harmonic oscillator. See Ref. [5] for their 
explicit definitions. 

Mitra has shown that the H,,,, obey the following recurrence (two typographical 
errors are rectified) : 

Hmdt = 
2 ( 

g[(n _ l)@ _ qyz 4n,n-2 - CnHnw-2 - 44?t,n--4~ (1) 

2/g + 2n - 5 
cn= [(n- l)(n-2)]“* 

and n d = (n-3)(n-4) 
(n-l)(n-2) I 

UZ; 

6,,, = 0 when i # j, = 1 otherwise. 
Equation (1) is a second-order difference equation. Therefore [6] it possesses two 

linearly independent solutions a, and /?,, whose asymptotic behaviours are quite 
different when n --) +co. More precisely, lim,,, ]P,,/an] = 0; a,, is said to be dominant 
and /3, subdominant. As shown by Miller [ 111 only the dominant solution of a 
recurrence may be calculated through a forward calculation. If one tries to calculate 
the subdominant solution through the same forward algorithm, one immediately 
encounters a growing instability with a pollution factor which is of the order of 
magnitude of (an/& 1. The most celebrated example is the impossibility of calculating 
stably the successive Bessel functions J,(z) through the forward applicati,on of the 
well-known recurrence 

J ,+,+J,,-I-(2n/z)J,=O. 

That is because the associated Bessel function of the second kind Y,, is also the 
solution of the same recurrence with lim,, IJn/Ynl = 0 (i.e., Y, is dominant and J, 
is subdominant). Miller has developed a special algorithm in order to evaluate the 
subdominant solution of a three-term recurrence and Oliver [ 121 has extended 
Miller’s algorithm when the recurrence contains more then three terms (see 
Appendix A for more details). 

In the case of recurrence (1) the H,,, as defined by Mitra are precisely 
subdominant so that the simple. forward calculation is strictly forbidden. Let us 
illustrate the situation in the special case m = 1. We set f, = H,,2n+3 so that Eq. (1) 
becomes 

4n + 5 + 2/j& 
‘+I + ((2n + 4)(2n + 3)]1/2fn + 

(n+lP+l) 
(n +2)(2n + 3) 1 1’2f- =o 

” ’ 
(n = 0, 1, 2 ,*.. ). 
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It is possible to find two linearly independent solutions of that recurrence that are 
asymptotic to 

( ) 2 = (-1)” n -“4 exp(f2&). 

(The technique for obtaining them is presented in Appendix C.) 
The stable forward evaluation of the subdominant solution of the recurrence is thus 

impossible because of the pollution factor 

Ian/PA = expW7i) 

(=lO . ‘*t if g = 1 and n = 50, for example). Table I illustrates the situation when 
g = 1: the f, calculated th rough the forward recursive scheme are compared to the 
true values deduced from Miller’s algorithm. For n = 50 note that only four figures 
remain correct due to a pollution factor ~lOi* x lOPi6 = 10e4. The same formula 
also clearly indicates why the variational approach is inefficient at low g without 
using Miller’s algorithm (the pollution factor becomes infinite). 

It is to be noted that Miller’s algorithm automatically furnishes the exact value of 
the ratio &/f-i = -0.2552885189. Combining with Eq. (2) one finds (g= 1): f-, = 
Hi,, = 0.7578721561 as reported in Table I so that the whole discussion developed 
by Mitra in order to evaluate Hi,, by numerical quadratures becomes superfluous. 

(3) There is no straightforward possibility of optimization allowing one to 
make N minimum without altering the accuracy of the results. 

(4) Moreover, no prediction is possible estimating (before the numerical 
investigation) the order of magnitude of N (for a given accuracy). 

(5) The method is not well adapted to the calculation of the wavefunctions. 
(6) A change of scale x = az is made necessary when g becomes too small in 

order to reduce the time of the calculation. 

TABLE I 

fn =Hun+, as Calculated by Mitra through the Forward Recursive Scheme Becomes Progressively 
Incorrect as n Increases 

n 
f, =Hwn+j fn =Hwn+j 

Forward calculation Miller’s algorithm 

-1 7.57872 E-01 7.51872 E-01 
0 -1.93476 E - 01 -1.93476 E - 01 

10 -1.41839 E -03 -1.41839E-03 
30 -1.27277 E-05 -1.27277 E - 05 
50 -4.90085 E-07 -4.90052 E-07 

100 -1.02924 E - 08 -1.24796 E - 09 
180 -7.01608 E - 06 -1.14513 E - 12 

Note. The calculations have been performed in double precision, i.e., with 16 significant figures. 
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In a few words such a method does not appear to be quite recommendable: it is 
expensive in computer time for a final result which is not most advantageous. 
Therefore, it should be reserved solely for the cases where no alternative method 
exists. 

II. REFINED HILL's METHOD 

Let us reconsider the problem settled by Mitra [5]: 

If” + [E - x2 - Ax’/( 1 + gx2)]y/ = 0. 

Our aim is to show that there exists a new method which solves the problem 
avoiding all the drawbacks mentioned previously (and more generally that would 
solve in the same way SE when the potential is given by an analytic expression). It is 
a powerful refinement of the Hill’s method recently rediscovered by Biswas et al. [ 11. 
We have presented elsewhere [7] the theoretical backgrounds of the refined method 
and we shall systematically refer to them when necessary. Let us expand w in the 
form (even states only) 

y = -f C,/k! D,,(wx). 
0 

(3) 

The D2k are Weber-Hermite functions (see Appendix B . w is a positive parameter 
whose value is not precise now. (Note that w = \i 2 would correspond to an 
expansion in the basis of the eigenfunctions of the harmonic oscillator.) It is easy to 
verify that the Ck obey the following fourth-order recurrence: 

4g(w4 - 4)(4k2 - 1) Ck+ 1 
+ (2k - l)(-64gk + 16g + 2w6 - 8w2 - 8A02 + 8gEw2 - 8gw4) C, 

+ [-8g(12 + w”) k2 + (144g - 409 - 160~ - 16Lw2 + 16gEw2 + 12gw4)k 
+ (30~ + 12~’ + 1210~ + 4Ew4 - 3gw4 - 12gEo’ - 6Og)] C,-, 
+ (k - l)(-32gk + 4Og + o6 - 4w2 - 410’ + 4gEw2 + 4gw4) C,_, 

+ g(w4 - 4)(k - l)(k - 2) Ckd3 = 0, (k = 1, 2, 3 ,... ). (4) 

The following operations are needed in order to obtain that recurrence: introduce 
expansion (3) in the starting SE and multiply both sides of the resulting equation by 
1 + gx2. Then by using relations (Bl), (B3), and (B4) in Appendix B one obtains a 
relation between five successive D,,(wx) with coefficients independent of x. That 
relation must be identically verified for all x. Since the various D,,(wx) are 
independent, one deduces recurrence (4) by simply equating to zero the coefficient of 
D2,Jwx) (k = 1, 2, 3 ,... ). 

Equation (4) can be rewritten in the form of an infinite linear homogenous system 
with the infinity of unknowns Co, C, ,... . The infinite determinant D of the matrix of 

581/39/l-6 
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the system is the Hill determinant of the problem. Its roots with respect to E are the 
searched eigenvalues of the problem. Practically, these eigenvalues are approximated 
by the roots of the kth approximant D (k) of D obtained by truncation of D so that 
only the k first lines and columns are retained. If we call E the roots of D and Eck’ 
the roots of Dtk), one defines the precision p of the approximation by 

JE-Eck’J/IE(=exp(-p). (5) 

A clue to the whole problem results from the fact that all the o-values are not 
equivalent: when k is fixed, various w-values lead to different precisions p. So it 
becomes interesting to study which value of w leads to the largest p (when k is fixed). 
We call this “best” value wOpt. popt is the corresponding best available precision with 
a &h-order approximant. Figures l-3 illustrate the experimental situation in various 
cases: k is fixed and (p, w) curves are drawn corresponding to various value of I and 
g. All these curves exhibit a maximum for w = w,.,~~. 

The problem may be reversed: p is fixed (i.e., one asks for 2.3~ correct significant 
figures in the eigenvalues) and k appears to depend on the value of w with a 
minimum (k,,, say) when w = wOpt. Both viewpoints are strictly complementary and 
both will be described by Eq. (9). The interest in the determination of w,,~~ is easily 
understood: if the value of w is correctly choosen near wOpt , the calculation of the 
eigenvalues with a given precision will need the consideration of approximants Dtk’ of 
minimal dimension so that the computation time will be reduced. 

15 - 

FIG. 1. Three experimental (p,w) curves corresponding to the cases k=40, 70, 100 (,I =g= 100). 
With I, and g fixed, note that both woD, and popt increase with k. 
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I 
aI& 2 

w 
3 L 5 w 

FIG. 2. Three experimental (p, w) curves corresponding to g = 20,40, 600, = 1, k = 20). With L and 
k fixed, note that both ~,,~r and popt increase with l/g. 

FIG. 3. The solid curve (p, o) is experimental (corresponding to I = g = 1, k = 20). The dashed 
curve shows results of the analytic prediction of Subsections V.l, V.2A, and V.2D. The dotted curve 
shows numerical results (see Subsection V.2E). 
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Remark. As pointed out before, the method of calculating the eigenvalues of the 
SE as the roots of the corresponding Hill determinant is not new. It has been recently 
explored by Biswas et al. [ 11. However, these authors systematically expand the 
searched wavefunction in terms of the solutions of the harmonic oscillator; i.e., they 
would choose cc) = fi in our case. Precisely the experimental curves of Figs. l-3 
show that the choice is not optimal since w,,~~ > fi. The essential role played by the 
parameter w was first mentioned by Banerjee [ 131, who proposed empirical estimates 
for it. In a previous paper [7] we studied the possibility of predicting w,,,~ in a non- 
empirical way in the context of anharmonic oscillators x2 + Lx2”‘. It must be noted 
that the estimates given by Banerjee do not exactly coincide with our o,,,: indeed 
w Opt always depends on the asked precision p (or equivalently on the order of the 
approximant considered), while Banerjee’s best w-values do not (i.e., these estimates 
are not truly optimal). 

III. APPROXIMATE EIGENVALUES 

Calling V the potential x2 + nx’/(l + gx’) one has the inequalities 

x2 < v < x2 + A/g and v< (A + 1)x2, 

from which one deduces two obvious conditions on the energy: 

2N+l<E,<2N+l+L/g and EN< (2N+ l)m. 

(a) When n/g is small or moderate, 2N + 1 is a good first approximation of 
E N’ 

A closer approximation is furnished by the consideration of the first approximant 
D”’ associated with (4). When equating it to zero one obtains a surprisingly good 
approximation of the fundamental state eigenvalue. A similar expression is obtained 
for the Nth excited state by reducing D to the sole element which lies at the inter- 
section of the (N + 1)th line and of the (N + 1)th column. That diagonal element is in 
fact identical to the coefftcient of Ck-l in recurrence (4). Remembering that 
recurrence (4) only deals with the even states and that the recurrence for the odd 
states deduces by simple substitution k --) k + l/2 in the coefficients of (4) [7] one 
finds the following equation for the approximate Nth eigenvalue E: 

-8g( 12 + 04)(N/2 + 1)’ 
+ (144g - 40~ - 16w2 - 1610~ + 16gEw2 + 12g04)(N/2 + 1) 
+ (309 + 120’ + 12Lcu* + 4Ew4 - 3gw4 - 12gEw’ - 60g) = 0, 
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N = 0, 1, 2 )..,, valid for ail the states odd or even. It is possible to deduce E from this 
relation. The value that is obtained is correct in the large g regime (EN 2N + 1) 
provided one chooses o = fi so that one gets 

,24gN2+(5/2+2rl+4gN)+2+A+g 
2gN+g+2 

(N = 0, 1, 2 ,... ). (6) 

For the fundamental state one has simply 

E, = (2 + A + g)/(2 + g). (7) 

Equation (6) is equivalent to a first-order Pade approximant for E. That first approx- 
imation shows that the choice w = fi is optimal when one considers low-order 
approximants Dck’. However, the accuracy is of course limited. If one needs higher 
precision, the sole possibility is to increase k. However, Figs. 1 and 2 show that wept 
increases with k in agreement with the following rules: (see also Table III for other 
details): 

-if k is fixed and if g --) 03, then w,~, -+ fi (slowly) and p-, 0, 
-if g is fixed and if k 3 co, then o,,~, + 00 and p + 00. 

In all cases one has aopt > fi except when k or p is small where mopt - fi. 

(b) When g is moderate or small, (2N + 1) m is a sufficiently accurate 
approximation of E,. 

(c) The sole critical case is I/g + 1 and g + 1. In this case one may have 
recourse to Ritz principle: E = min,(u, H, u)/(u, u) with H = - d2/a!x2 t V(x) and 
where the trial function u is taken as u = (I + gx’) exp(-ax’) (a is an adjustable 
parameter). The result is for the fundamental state 

EN_ min 64a4 - 32a3g t (16 t 16rl t 28g2) a2 t (24g + 12lg)a + 15g2 
0 4a( 1 6a2 t 8ag + 3g2) 

IV. THEOREM ABOUT LINEAR nth-ORDER RECURRENCES 

Before going further we need a theorem which has been established elsewhere [7]. 
Let us consider the general nth-order linear homogenous recurrence (where we 
assume its dependence on two parameters o and E) 

A~‘(o,E) Ck+l +Ap-“(w,E)C,+ ... tA;“‘(W,E)Ck-n+l =0 (8) 
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with Ck = 0 if k < 0 and k = s, s + l,... (s ) 0, fixed integer). The kth approximant of 
the associate Hill determinant is written as 

D’k’ = 

A&S--l) ... 
s 

A(“’ 

. . s 

A(b) 

. . . . 
. . 

0 
. . 

. . 
n-1 . . 

. . . . ‘. 

. . . . . . 

. . . . A (n’ 

0 . . . . 
k-2 

..... i 

A (0’ 
kts-1 

. . . ’ A~+--~-l1 

All the elements are zero except those on the main diagonal, on the (s + 1) upper 
adjacent diagonals, and on the (n - s - 1) lower adjacent diagonals. As seen before, 
the eigenvalues of the problem are given by 

E = ;“, EGk’. 
-9 

Recurrence (8) has n linear independent solutions that are well contrasted for large k 
[lo]. We note them: 

1 c:” I> ) cp’ ) > * * * >, 1 cp ( (k sufficiently large). 

The general method for finding the asymptotic behaviours of the 6:) is recalled in 
Appendix C. 

THEOREM. The relative error committed when considering Dtk’ in place of D is of 
the order of magnitude of 

ID - D’k’\/JDI -pk = (Cf+2’/C~+“I. 

Consequence. In the case where the roots E of D are simple we also have 

JE - E’k’l/lE( -pk. 

Combining the last result with Eq. (5) one finds 

p=ln]C~+1)/C~+2)~=-ln]pk]. (9) 

That relation plays the essential role in our paper: it relates the brecision p, the order 
k of the approximant Dtk), and w (by help of the Cf’). It is the searched (k, w,p) 
relation which must theoretically fit the experimental curves of Figs. l-3. Section V 
develops the various ways of exploiting Eq. (9) in the general case of recurrence (8). 
The special case of recurrence (4) is also investigated and serves to clarify the 
situation. For that special case one has n = 4, s = 1 so that p N In ] C~2’/C~3) ]. 
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V. THEORETICAL PREDICTION OF THE (~,~,~)CURVES 

1. First Method 

The Cf) are assimilated to their asymptotic behaviours. In Appendix C we 
calculate the asymptotes of the four solutions Cif) (i = 1,2,..., 4) of recurrence (4). 
They are given by 

ak - k-1(-1/2)k exp(om), 

/lk - k- I(- 1/2)k exp(-o @@), 
Yk N k-V4-‘6E-A )‘(4q 1/2)k(o’ + 2)k/(w* - 2)k, 
6, - k-‘/4+(gE-1)/(4g)(1/2)k(w2 - 2)k/(w” + 2)k. 

The numbering of a k,..., 6, in the form Cp) (i = 1,2,3, or 4) depends on their order 
of dominance which itself depends on o; when w is fixed, one numerically calculates 
the four asymptotes ak,..., k, 6 * one excludes both dominant and subdominant solutions 
to retain only the two intermediates. These are introduced in the fundamental 
equation (9) in order to obtain the precision p: let us fix k and let w vary: 

--If w -c Wept @opt defined by lPkl = IskI) one has 

i6ki < IPki < lakl < IYkl 

so that 

Equation (10) shows a linear increase of p with respect to w corresponding to a 
straight line in the (k, w,p) curve of Figs. l-3. The reader may also verify that its 
slope is correctly given in each case by dpldw = 2 m. 

-If wept < w < w, (w, defined by lakl = ) ykl) one has 

I& < i6kl < lark1 < bkl 

so that 

p = -1n I Sk/a,/ = -In ( k3’4+(gE-Au(4g) exp(-w a)(w2 - 2)k/(w2 + 2)kl. (11) 

-If w, < w, one has 

lPk/ < i6kl < bkl < lakl 

so that 

p = -1n ISk/ykJ = -1n I k’gE-Au(2g)(w2 - 2)2k/(w2 + 2)2k(. (12) 
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These three expressions for p show that all the values of w are not equivalent. Let us 
fix the dimension k of the approximant: when w increases and approaches w,rt the 
precision- increases; for 0 = w,rt, p is maximum. When w increases between o,,,~ and 
o, the precision decreases. For o > o, the diminution of p becomes dramatic. The 
practical conclusion is evident: it is highly recommended that o be chosen just next 
w,,~~.) Figure 3 illustrates the situation when L = 1, g = 1, k = 20: 

The experimental curve is drawn in heavy lines. The theoretical prediction is 
represented by dashed lines. The slight discrepancy is due to two reasons: 

-Formula (9) should be rigorously written as 

exp(-p) 2: A ]pk 1 where A is an unknown constant independent of k. 

So there is a possible shift between the experimental and theoretical curves. 
-The asympotes ak . . . 6, are accurate only if k is very large. However, we wish to 

make k as small as possible so that the prediction cannot be perfect. It is, however, 
largely sufficient. 

The theoretical prediction can also be carried out in a different way: if p is fixed 
relations (10) and (11) allow one to determine the best cu- and k-values. Combining 
(10) and (11) one finds 

3g+gE--ln p’g P*g 2 -2 

2&T 8wi,t 

In %pt 

+ %,t W&t + 2 
+p=o, 

kept = $$, 
opt 

(13) 

(14) 

from which one deduces wept and k,,, when 1 and g are given. 

Remarks. (1) The presence of parameter E in these equations might be judged 
prejudicial since we are trying to determine it precisely in an optimal way. However, 
the influence of E in both yk and 6, is completely subdominant (indeed E/4 only 
appears as a power of k) so that a few accurate values of E are largely sufficient for 
the predictions that are in view. In this paper we have used the approximate E as 
calculated in Section III. 

(2) All Equations (lo)-(14) are invariant under the scale transformation 
x = czz in the starting SE. Take, for example, Eq. (10). After the change of scaling, 
Eq. (10) becomes p = (2w/a) @&, 
p=2wmb 

which is clearly equivalent to our 
ecause of a2 = g/g1 as established by Mitra [5]. 

2. Second Method: Saddle Point Method 
In this subsection we develop another approach which can be used in a more 

general context. This approach is due to Magnus [ 141. See also [7]. One looks for 
integral expressions that satisfy the fundamental recurrence relation. Further, one 
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tries to evaluate these integrals through a saddle point method [ 151. By that method 
one gets closed expressions for the Ci’) which are often efficient even when k is not 
extremely large. 

w” + [E - V(x)]v/ = 0 with V(x) = V(--X) 

and let us look for the even eigenstates only: 

w = 2 C,/k! Dz&ox). 
0 

The C, derive from the orthogonality property of the D,, functions: 

C, - k!/(2k)! 4 y(z) D,,(oz) dz. 
w 

One can estimate C, for k not too small in the following way: 

where u is a root of V(U) = E, 

D,,(oz) N \/o! exp ,t(4k + 1) lyym (x2 - l)“* do) (see Appendix B) 
1 

so that 

c:) - k1/42-k 

where the n integration contours q are chosen in the complex z-plane. The 
integration with respect to z is easily performed with the aid of the saddle point 
method [ 151: 

f 
exp[f(z)] dz - [-2~lf”(z*)]r’* exp f(z*), 

r 

where z* are the saddle points of f, solutions of f’(z) = 0. The equation for the 
saddle points is in our case 

*[V(z) - El”’ f ~to[02z2 - (8k + 2)]“” = 0, 

i.e., V(z) -E = 04z2/4 - w2(4k + 1)/2 with roots zi(i = 1, 2,..., n). One obtains 

Cr’-kY42-kexp 1’1 
,Zill/Ez 

(x’ - 1)Y’dx (15) 
1 I 
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(with uI = lim,, zJ. In (15) the inessential term [-2@“(z)]“’ has been omitted. 
When k -+ co one has that the Cy) tend to the asymptotes of the recurrence as deter- 
mined in Appendix C. That remark allows one to make a good choice in the signs f 
that are imprecise in Eq. (15). The determination of the (k, w,p) curve is then 
achieved provided the first integral Z = I:, (V - E)U2 dx present in (15) is evaluated. 
Five cases are possible: 

(A) The integral can be performed analytically. In this case one immediately 
derives closed expressions for the C, . (‘I A simple application of Eq. (9) furnishes the 
desired (k, w, p) curve. 

If V(x) =x2 + Lx’/(l + gx’), the integral Z is exactly calculable provided E is 
neglected so that the prediction is almost correct for the fundamental state. One 
successively finds : 

-the equation for the saddle points Pz4 + Qz* + R = 0 or, in greater detail, 

g(co4-4)z4t[co4-4-(8kt2)02g-4A]z*-(8kt2)w2=0; 

-the four saddle points 

Zi = f [-Q f (Q’ - 4PR)“*] “9 i = 1,2, 3,4, 

zI =&[-Q t (Q’ - 4PR)v2]1’2 - (2k/a)“’ if k-+oo, 

Z~=-$[-Q-(Q2-4PR)W]‘“-i/&(1-&) if k+m, 

z* = -z3 and z4=-z, with a = (04 - 4)/(40*); 

-the four solutions CL*) (i = l,..., 4): 

1, 

wr,l~ 
Cf'-k"42-kexp k Iix[l +A/(1 tgx*)]"*dx f (4kt l)I, 

ui 

- kY42-kexp 
I 
f $ [\/cl tgzf)(A t 1 tgz:) - d(l tgu:)(J + 1 tguf) 

o”z; - (8k + 2)/(8k + 2) 

$&-2 + “*‘* J 
-- 
8k t 2 

1 III ; (16) 

-the ambiguity in the f signs is resolved as follows: when k becomes very large, 
the saddle points are asymptotic to k(2k/a)v2 or *i/h. It is then possible to 
simplify Eq. (16) in order to recover the asymptotes czk, Pk, Yk, and 6, as calculated 
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in Appendix C. The coincidence occurs if and only if one chooses the signs - and + 
(in that order) in Eq. (16) for CL” and Ci2), while Cy) and Cf) need the choice + and 
+. Now let o vary and let us calculate the four Cy) for each value of o. One only 
retains the two intermediate ICP’I. Introducing this in Eq. (9) immediately furnishes 
the values of the precision p. The corresponding (k, o,p) curve coi’ncides with the 
theoretical curve determined in subsection V.l (see dashed lines in Fig. 3 for the case 
I, =g= 1). 

(B) The integral Z is not elementary. A possibility is to evaluate it numerically. 
That will be easily possible only if the saddle points remain at a finite distance when 
w varies. However, in the special case that interests us it is not verified since 

lim z ,=fCCl. 
,-+G 4 

Special refinements should be possible to allow the procedure by deforming the 
integration loop and avoiding the critical point w = fi. However, we do not explore 
it here, for the sake of brevity. 

(C) A third possibility is the following: let us define qi = In 1 Cp’ 1 so that 
Eq. (9) becomesp=q,+, -qs+2. Let us derive the equation with respect to W: 

dp dq,,, dqs+2 -- 
dw- dw -dw’ 

where 

da z=Real f do 
I 

3 [V(zi)-E]~2* +(LI+w$$ [co’zi’ - (8k + 2)] 42 1. (18) 

Equation (18) is more advantageous than Eq. (15) since all the functions are now 
elementary. However, Eq. (18) presents a small drawback: the (k, o,p) curve is now 
replaced by a (k, co, dp/du) curve. Fortunately a simple numerical integration allows 
to construct the curve by knowing its slope provided the curve is known at one point. 
Precisely when o = 0, Eq. (15) gives the Ci’) under the calculable form : 

1 Cy)I = exp qi = k”42-k exp +(4k + 1) la (x2 - 1)“2 do) ) 
1 

with 

a, = lii [OZJ~~]. 

However, the method fails if one or several Ci’) are not continuous in the w-domain 
between 0 and O,,,~. This is due to the fact that the numerical integration becomes 
inefficient in that case. Precisely, in the case of potential V(x) = x2 + Jx2/( 1 + gx’) 
one has that yk is discontinuous in w = \/z (see its asymptotic expression in 
Appendix C). Since o,pt > fi, we must look for another approach. 
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(D) Fourth method: when the method exposed in case C is impossible one 
calculates the four solutions Cif’ for a value of w say w’ so that the Cf’ remain 
continuous in the whole domain between LO’ and uropt. In order to evaluate the Cp) 
for w = w’ two possibilities exist: 

-to use the asymptotic expressions for cc = o’ as determined in Appendix C or 
-to determine the Cy) for o = o’ through the extended Miller algorithm as 

presented in Appendix A. 

The procedure is efficient for the specific potential V = x2 + 13x2/( 1 + gx’) provided 
one chooses w’ > fi. It leads to a (k, o,p) curve which is practically identical to the 
curve previously obtained with the aid of Eq. (15). Therefore it has not been 
reproduced in Figure 3. This fact confirms the subdominant influence of the energy 
parameter in our asymptotic estimations. 

(E) A fifth method exists which is purely a numerical one. It suffices to 
determine numerically the solutions Cp + ‘) and Cf+2’ through the extended Miller 
algorithm in the whole range of values of o. Then applying (9) furnishes a numerical 
(k-, w, p) curve (see dashed line in Fig. 3 for the case J = g = 1). 

VI. NUMERICAL APPLICATIONS 

We have used the techniques described above in order to predetermine the values 
of “opt in the whole range of L- and g-values. The precision p has been chosen equal 
to 13.8 (six significant figures in the eigenvalues since exp(A13.8) = 10P6). 

In fact the prediction of coopt is not useful when 1, g < 1 because very low values of 
k furnish the searched eigenvalues. When g (or 1) increases the prediction becomes 
useful and progressively necessary. It is interesting to point out that high g-values 
require consideration of large-order approximants D (k) (for a given precision). That 
remark also held in Mitra’s approach. What we have performed is simply the 
selection of the best o in order to minimize k. In other words Hill’s method has been 
optimized with respect to w. We may also note that the potential x2 + Lx’/(l + gx’) 
exhibits two singularities in x = *i/h that approach the real axis when g increases. 

Tables II and III show the spectrum of the eigenvalues for the potential 
x2 + 1x2/(1 + gx’) with the corresponding values of wept and k,,, . Our tables are 
consistent with the results published by Mitra [5] except for minor discrepancies: for 
example, when 1= g = 100 Mitra finds 1.8364 while the correct value is 1.83634 (the 
same is true for A = O,l, g = 1). It must also be noted that Table II for the eigen- 
values covers a larger range of @,g)-values than Mitra’s paper, especially in the low 
g-regime where the variational method (as used by Mitra) becomes inefficient. 
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TABLE III 

Values of qpr for various I- and g-Regimes as Determined through the Numerical Method of 
Subsection V.2E. 

1 2 (10) 

IO 3 (30) 3.3 (30) 4.2 (25) 

100 5.5 (100) 5.8 (95) 6.5 (70) 

loo0 10 (200) 

Nore. The corresponding values of k,,, are given in parentheses. The blanks correspond to the cases 
where the prediction is not useful since very low k-values furnish the correct eigenvalue in the whole 
range of w-values. 

VII. CONCLUSION 

The new method appears valuable in many respects: 

-The N x N determinant whose roots are to be calculated is a five-band deter- 
minant containing only (5N - 6) non-vanishing elements (to be compared with the 
N2/2 elements of the variational method). 

-All the elements are given by simple algebraic expressions: no integral is needed, 
no recursive calculation. 

-Both prediction and optimization are possible. They make it possible to estimate 
the time of the numerical computations and the precision of the results. 

-No change of scale is needed at low g because the optimization automatically 
selects the best value of o present in (3). Strictly speaking, w plays in Eq. (3) the role 
of an arbitrary scaling parameter so that o Opt appears to be the best scaling possible. 

-The wavefunctions are easily deduced through the recursive calculation of the 
C,. However, one must be careful that the C, that are interesting for our purpose 
form the subdominant solution of the recurrence. The forward calculation of the 
successive C, is therefore strictly forbidden because of the probable instability that 
will occur. The calculation must be performed backwards in accordance with the 
Miller algorithm [ 111 or with the extended Miller algorithm [ 121 (see Appendix A). 

We have performed various numerical tests on the obtained eigenfunctions. For 
example the orthogonality property of the various excited states has been verified: 

I + O” I& dx = 2 (&/w)(2k)! C, C~/(IC!)~ < exp(-p), 
-m 0 
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i.e., the overlap integral is always less than the asked precision. In the same way we 
have verified that &/v = E at various space points even in the non-classical region. 

APPENDIX A: EXTENDED MILLER'S ALGORITHM 

An nth-order linear homogenous recurrence like (8) has n independent solutions 
that are asymptotically well contrasted [6, lo]. They are written 

Jcy( > Icy)1 > **a >lC?‘I (k large). 

Ci’) is said to be dominant and Cp) is subdominant. The others are intermediate. 
Each linear combination of the type L, Cif) + . . . + 1, Cp) is dominant if R, # 0 and 
non-dominant otherwise. The forward recursive evaluation of the C, is stable if and 
only if C, is dominant. In the other cases one needs a special algorithm which has 
been discovered by Miller when n = 2 and by Oliver when n > 2. Miller’s simple 
algorithm determines the subdominant C, through a backward recursive scheme. The 
procedure is justified by the fact that working backwards interchanges the dominant 
and subdominant character of the solutions of the recurrence. However it fails when 
the searched solution is intermediate. If one wishes to compute the intermediate 
solutions, one must refer to the extended Miller algorithm due to Oliver [ 121. Since 
this extended algorithm calculates the n solutions in a stable way, we shall present it 
in greater details. Suppose one wishes to calculate C, (I). One starts with recurrence (8) 
rewritten under the form of a linear infinite system (with k = i, i + I,... successively). 
Then one truncates the intinite system by only retaining the K first equations and by 
setting Ck = 0 when k > K. The truncated system is written as (in matrix notation) 

4 
b. ,@;‘+I) . . . A(n) 

. . . 
171 

. . . . . 
*. . . . . 

N : . . *. 
+ . *. . . 
7 L A”’ n-l . . . . . . :$‘$“’ ..:‘A:?, 

. A(O) , n , . . . . . . . . . . . . .A:-‘+” .,.A:’ 

. . *. . . 
*. *. 

*. 
‘A (n> 

. . x -* 
. . . . 

. . ‘. . 
. . 

. . 
. . : 

“A;;,-, . , . . . . . . :::*~~$;) 

7 7 L 
I 

=- 

Aj:;“C, + . . . +A”’ C 1-2 1-n 

,4j”-‘-“C 0 + . . . +AjO’C ,+I+” 

0 

0 

The coefficients C,, C-i ,..., C,-, which appear in the second member are the initial 
conditions that can be chosen arbitrarily (however, not simultaneously zero). The 
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numerical resolution of that system furnishes stable approximations of the successive 
Cf). The precision on Cjj) is given by [ 10, 121 

precision on Cp) - ( cpq- 1)/Q- “Q&i’) (i = 2, 3 )...) n). (AlI 

So the accuracy of the algorithm decreases when k approaches K. Equation (Al) is 
interesting since it allows one to choose K correctly in order to obtain the searched 
Cy) with the desired precision. In formula (Al) the expressions Clf’ may be 
assimilated to their asymptotes as determined in Appendix C. 

Note. If i = 1, formula (Al) is inapplicable. However, that does not matter since 
the extended Miller algorithm calculates the dominant solution Cr) in a totally stable 
way even if k approaches K. Therefore the precision on CL” is equal to the precision 
of the calculator, 

APPENDIX B: THE WEBER-HERMITE FUNCTIONS DJu) [8]. 

The functions Dk(u) obey the following relations: 

D;(u) = (~74 - k - l/2) D&), 

u&(u) = &+ l(u) + kD,- l(u). 

(Bl) 

(‘32) 

Successive applications of (B2) lead to 

u2Dk=Dk+*+(2k+ l)D,+k(k- l)D,-,, @3) 

u4D, = Dk+4 + W + 6)D,+, t(6k2t6kt3)D,tk(k-1)(4k-2)D,-, 

tk(k- l)(k-2)(k-3)D,-,. 034) 

The Dk(u) are orthogonal according to the formula 

I + m D,(u) D,(u) du = 0 if mfn 
-a2 

= &Gin! if m=n. 

A classical WKB calculation allows one to derive from (Bl) the asymptotic 
behaviour of Dk(u) (valid when,k * ]u]); one finds 

Dk(u) - fi! exp 
( 

f(2k + l)J1 ‘-dndx). WI 

Remark. Equation (BS) should be rigorously written as 

Dk(u) N fi! exp k(2k t 1)11 *-dndx - f ln[u2/4 - (k t 1/2)][ a 
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However, the logarithmic term is largely inessential beside the other term present in 
the exponential. 

APPENDIX C: DETERMINATION OF THE ASYMPTOTES OF THE SOLUTIONS OF A 
LINEAR HOMOGENOUS nth-ORDER RECURRENCE 

Let us consider the general recurrence (8) 

with 

&i’= 2 aj,pk-d’ (r is a fixed integer). 
p=o 

The recurrence is said to be regular of type r in the sense of Poincare if and only if 
a,,, # 0 and a,,, # 0. Its characteristic equation is written as 

a n,o~n + an-l,O~“-’ + .s. + a,,, = 0 

with n roots distinct or not. Successive studies carried on by Norlund [ 161, Birkhoff 
[ 171, Culmer [ 181, and Turrittin [ 191 have shown that the n expressions to which the 
cp (i = 1, 2,..., n) are asymptotic are of the following type: 

asymptotes N zkkw exp[ak(m-lvm + pk(m-2um + . . . + r,rk’l”](ln k)g, (Cl) 

where m is an integer such that m < rp (where p is the multiplicity of the root z as a 
solution of the characteristic equation). Coefficients w, (x, /3,..., q, and g are to be 
determined. Denef and Piessens [9] have indicated a possible way to attain them: 
they introduce the whole expression (Cl) in the recurrence and then expand the 
resulting expression in successive powers of k- ‘lm. Then by equating to zero the coef- 
ficients of the highest powers in k they obtain the relations that allow one to 
determine those coefficients. We have used the same method in another paper [lo] in 
order to extend the results to the largest possible number of cases. Tables have been 
published that immediately furnish the asymptotic expressions when the recurrence is 
given, If one applies that method to recurrence (4), one finds the four asymptotes in 
the following way: the recurrence is regular of type I (r = 1) in the sense of Poincari. 
Its characteristic equation is written as 

16g(04 - 4) z4 - 128gz3 - 8g(12 + 04)z2 - 32gz + g(o” - 4) = 0. 

The four roots are: 

3 (double root), + s (simple root), + $-$ (simple root). 
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The two asymptotes associated to the double root are according to Eq. (Cl) of the 
type: 

(-l/2)’ k” exp(cu fi)(ln k)g, 

while the simple roots give rise to asymptotes of the type 

(1/2)k[(o’ f 2)/(w* F 2)lk k”‘(ln k)g’. 

The tables that are included in Refs. [9, lo] allow one to calculate the values of coef- 
ficients a, w, w’, g, and g’ precisely. Finally one finds 

7 - k-‘(-1/2)k exp(fwm), 
k 

Yk 

6k 

N k-“W8~--1MW( 1/2)k 

APPENDIX D. NUMERICAL EVALUATION OF HILL’S APPROXIMANTS 

If we need m correct significant figures in the results, we know from Eq. (5) that 
we must choose p = 2.3m. With p so fixed, a careful application of the technique 
described in Section V leads to the best value of o to be used (called O& and also 
to the corresponding best dimension k,,, of the Hill approximant D(kOpt). In order to 
obtain the searched root of this approximant the simplest methods is to detect the 
change of sign of Dck ) m in the neighbourhood of the approximate E, deduced from 
Section III. To check the obtained result it is possible to increase the dimension of 
Dtkopt) by 10 units (say) in order to verify that the root remains stable with m figures. 
Working in that way allows to deal with the sole Dtkm): no ‘&cursive calculation of 
the successive Dfk’(k = 1 2 ,..., kept) is needed. In fact it must be recalled that when 
s > 1 (see Eq. (8) for the’definitions of s) no linear recurrence does exist between the 
successive Dtk’. However, their recursive calculation would be possible through non- 
linear schemes [7] (together with the extended Miller’s algorithm to avoid loss of 
significant figures). 
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